Downer Cow Syndrome
Downer Cow Syndrome

• Definition: Any cow that remains in sternal recumbency for more than 24 hours after initial recumbency, and after treatment for primary medical problems.
Occurrence of Downer Cow Syndrome

58% of cases occur in first 24 hours of lactation
97% of cases occur in first 100 days of lactation

May become recumbent for any number of primary medical reasons: e.g. A common complication of milk fever: 20-28% of milk fever cows become “downers”

Non-medical risk factors:
- Season (winter)
- Management: housing, footing, trauma
- Sanitation: infectious disease
- Nutritional management: metabolic disease
Primary Recumbency due to Primary Disease

- **Metabolic disease:**
 - Hypocalcemia
 - Hypophosphatemia
 - Hypokalemia
 - Hypomagnesemia
 - Fatty liver disease
 - Starvation

- **Trauma**
 - During calving or when struggling to get up
 - Fractured pelvis, long bones, dislocated hip
 - Rupture of Gastrocnemius tendon
 - Nerve damage: Sciatic &/or Obturator nerve paralysis

- **Septic/Toxic shock:** eg. Mastitis, metritis, RDA/RTA, etc
- **Other:** eg. Lymphosarcoma in vertebral canal

*Leads to******
Progresses to Secondary Recumbency

• Prolonged recumbency causes pressure damage:
 – Ischemic necrosis of muscles of ‘down’ hind limb
 • edema & swelling, congestion, cellulitis, venous thrombosis
 • Primarily Gastrocnemius & Semitendinosus muscles
 – Nerve damage:
 • common Peronial branch of Sciatic nerve.
 • Loss of function of digital extensors => knuckle over at fetlock

Leads to………
May Progresses to Tertiary Recumbency

- Cow struggling to get up may cause musculoskeletal damage that result in long-term recumbency:
 - Fractures
 - Rupture of muscle, ligaments
Progression of Events

Primary Recumbency (Primary disease)

Secondary Recumbency (ischemic muscle necrosis &/or nerve damage)

Tertiary Recumbency (musculoskeletal injury)
Clinical Signs

• Usually in sternal recumbency but unable to rise

• Often bright and alert ("alert downers")

• Eating, drinking, urinating, defecating
 Hindlimbs: under body or stretched out behind (‘frog-legged’)

• Forelimbs functional: “creepers”

• Sensation often present in hindlimbs (withdrawal reflex)

• +/- attempts to rise (part way up “sitting” or role to other hip)
Downer cow
‘dog-sitting’
Downer cow being lifted

What abnormalities do you see?
Pressure Damage and Elevated CK

- **Study:**
 - Used Halothane anesthesia to maintain cows in sternal recumbency for 6 - 12 hrs. (lower hind limb under body)

- 8 of 16 animals later unable to stand => became permanent downers:
 - Initially weak leg
 - within 24 hrs => stiff, swollen leg

- other 8 of 16 showed transient effects of pressure damage:
 - caudal ataxia and peroneal nerve paralysis

Cox et al., 1982
Pressure Damage and elevated CK

<table>
<thead>
<tr>
<th>Time interval after induced recumbency (hrs)</th>
<th>CK values (mean +/- SD)</th>
<th>Ambulatory group (8)</th>
<th>Downer group (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15,140</td>
<td>12,430</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>36,610</td>
<td>39,640</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>12,800</td>
<td>41,640</td>
<td></td>
</tr>
<tr>
<td>4 days</td>
<td>2,160</td>
<td>16,160</td>
<td></td>
</tr>
<tr>
<td>6 days</td>
<td>730</td>
<td>5,750</td>
<td></td>
</tr>
</tbody>
</table>
Utility of CK testing

• Maximum CK activity occurs approx. 48 hrs. recumbency

• > 48 hrs., CK activity declined rapidly, even in downer animals

• a low CK value after being down for 5 days is meaningless

 CK => limited usefulness as prognostic indicator

• Clinical observation a better predictor of status than CK levels.
Diagnosis

- A diagnostic challenge
- Must differentiate primary from secondary disease
Diagnosis

- History;
 - Recumbent > 24 hrs.
 - Often high producer, early lactation
 - +/- history of primary disease
 - e.g. If Hx of milk fever, ask treatment given, route of administration, serum biochemistry results, response to therapy?
 - Trauma?
 - Dystocia?
 - Infectious disease?
Diagnosis

• Physical exam:
 – Alert, but unable to rise
 – If can partly stand may observe muscle swelling, stiffness or nerve deficits
 – Thorough exam to look for other primary disease

• TPR, rectal/vaginal exam: udder, pelvis, uterus, vagina, legs, etc., etc.
Differential Diagnoses

- Must differentiate primary from secondary causes of recumbency

- Primary diseases:
 - Blood chemistry: Milk fever, hypo-P, hypo-Mg, fat cow syndrome
 - Musculoskeletal injury (pelvis, hip, long bones, stifle, hock, ruptured tendons)
 - Nerve injury (spinal cord lesions, calving paralysis)
 - Toxic conditions: mastitis, metritis, uterine torsion, peritonitis, etc.
Clinical Pathology

- Elevated CK, AST:
 - depends on duration of recumbency
 - CK values peak after 36-48 hrs. then fall again
 - Grave prognosis is >10 times above normal and recumbent > 2-3 days.

- +/- hypocalcemia, hypo-Phos, hypo-Mg, hypo-K

- +/- elevated serum urea & creatinine (shock, poor renal perfusion, renal failure)
• Urinalysis:
 – Proteinuria:
 • within 48 hrs of onset of recumbency
 • due to skeletal muscle damage
 – Myoglobinuria:
 • skeletal muscle damage
 – +/- ketonuria

• Hematology:
 – Evidence of sepsis?
Treatment

• Specific treatment for any primary disease found (e.g. milk fever, hypophosphatemia)

• Analgesics/anti-inflammatories:
 – Non-steroidals?
 – Steroidals?
Treatment

• Analgesics/anti-inflammatory:
 – Non-steroidals:
 • ASA
 • Banamine (flunixin meglumine)
 • Phenylbutazone
 • Ketoprofen
 – Steroidals:
 • Dexamethasone
 • Predef
Treatment

- Analgesics/anti-inflammatories:

 - Non-steroidals:
 - ASA: 24 hr 1 d
 - Banamine (flunixin meglumine): 72 hr 10 d
 - Phenylbutazone: 96 hr 12 d
 - Ketoprofen: 24 hr 7 d

 - Steroidals:
 - Dexamethasone: 0 0
 - Predef: 0 7 d

Withdrawal times (AMDUCA)
Treatment (con’t)

• Supportive care:
 – good footing/traction
 – Lots of bedding/cushion
 – Shelter
 – Access to water/feed
 – Roll frequently (q 4-6 hrs.)
 – Massage hind limbs
 – Treat decubital sores & provide excellent bedding
Supportive Care (con’t)

• Lifting devices
 – Sling
 – Hip lifters/clamp
 – Inflatable cushions
 • Only useful if animal can stand once supported
 • Only allow short-term lifting

 – Aquatank:
 • Float in warm water for 6-8 hour periods
Hip Lifters, hobbles
Inflatable Air Bag
Flotation Tank
Prognosis

- Prognosis frequently guarded & depends on:
 - Cause of recumbency
 - Duration of recumbency

- Mortality 20-67%
- Many die within 7-10 days due to sepsis or shock
- 33% recover between 3-30 days
- May continue treatment if no obvious physical abnormalities, bright, eating, and continued attempts to rise
Prevention

• Prevent metabolic disease:
 – excellent nutritional management
 – prompt treatment of milk fever to avoid prolonged recumbency
 – Monitor treated cows closely for 24-48 hrs. post-treatment

• Prevent trauma:
 – Non-slippery floor
 – Adequate bedding in calving area
 – Good design for chutes, etc. for moving cows
 – Move cows calmly, quietly and slowly
 – Supervise parturition & provide appropriate assistance to avoid prolonged calving.
Questions ?